糖心破解版

Skip to main content Skip to search

糖心破解版 News

糖心破解版 News

Team of Scientists at Einstein and UAlbany Nano College Receive Major Grant to Develop World鈥檚 Smallest Cancer Detection Device

Nov 20, 2006 -- Researchers at the Albert Einstein College of Medicine of Yeshiva University have received a $2 million grant from the National Cancer Institute to study tumor 鈥渕icroenvironments鈥 鈥 where tumors interact with surrounding tissues, cells and chemicals in ways that all too often encourage cancer cells to invade other areas of the body in the process known as metastasis. With the new NCI grant, Dr. John Condeelis, co-chair of anatomy and structural biology at Einstein and the principal investigator of the newly funded program, and his Einstein colleagues will team up with researchers at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany to develop a next-generation microchip that, when placed in a cancerous mass, can gather information on the presence of metastatic cells that would demand more aggressive cancer therapy. 鈥淭he NCI has placed a very high priority on understanding the 鈥榙ialogue鈥 in tumor microenvironments that appears crucial for causing cancers to spread,鈥 says Dr. Condeelis. 鈥淭his five-year Tumor Microenvironment Network grant will allow Einstein to influence the way research is carried out in this emerging and important field.鈥 Dr. James Castracane, the project鈥檚 co-investigator, who is head of the Nanobiosciences Constellation at CNSE, said, 鈥淏y integrating cutting-edge science and engineering at the nanoscale level with vital biomedical research, it is our intent to provide deeper understanding of the causes of cancer metastasis and migration 鈥 knowledge that is of critical importance in the treatment and, ultimately, prevention of cancer.鈥 Dr. Condeelis has used the multiphoton confocal microscope to directly observe cellular interactions in the tumor microenvironment of live animal models of breast cancer. By placing an artificial blood vessel near tumors, he was able to collect motile cancer cells for study and to predict鈥攂y the presence or absence of certain signaling molecules鈥攚hether the tumor cells have the potential to metastasize. The Einstein and Albany researchers will use nanotechnology, which involves studying and working with material on the molecular level, to design a 鈥渕icrochip鈥 version of the artificial blood vessel that Dr. Condeelis has used successfully in animals. The microchip will be assembled from nanoscale components so that several different functions can be carried out within a very small package. The goal: to implant these tiny microchips 鈥 just two to three cells in diameter and a tenth of a millimeter in length 鈥 in human tumors, where they would remain for days or weeks. The chips would report remotely to scanners that would 鈥渞ead鈥 them on the nature of the cells that infiltrate them鈥攊n particular, on whether metastatic cells are present that would call for more aggressive cancer therapy. In 2005, Einstein formed an alliance with UAlbany鈥檚 CNSE to advance education and research in the rapidly growing fields of nanobiotechnology and nanomedicine. 鈥淭his NCI grant marks a true milestone for this partnership, which combines the unique expertise and resources of both institutions to apply nanoscale principles to detect diseases and develop treatments for them,鈥 says Ira M. Millstein, chairman of the Einstein Board of Overseers. 鈥淲e are committed to ensuring that the Einstein-Albany alliance will lead the nation in efforts to use nanotechnology to improve peoples鈥 lives.鈥 Einstein is one of nine research centers nationwide to receive a Tumor Microenvironment Network grant. In a departure from traditional NCI practice, the nine grant recipients are expected to collaborate closely during the five-year research period to improve technologies used in studying the tumor microenvironment. For example, principal investigators from all nine research centers will meet twice a year to exchange data and compare results that they鈥檝e obtained.

Share

FacebookTwitterLinkedInWhat's AppEmailPrint

Follow Us